Electro-Thermal Ice Protection System Completes Icing Tunnel Tests

Electro-Thermal Ice Protection System Completes Icing Tunnel Tests

The GKN/Ultra electro-thermal Wing Ice Protection System (WIPS) for the Boeing 787 Dreamliner, which will be the first all electro-thermal anti-ice / de-ice system to be qualified for use on a civil airliner, has successfully completed a 30 month program of icing tunnel tests in the Boeing Research Aircraft Icing Tunnel (BRAIT).

In itself, this program of ground-based, simulated tests represents a major development in FAA certification procedure. Devised by Boeing, GKN Aerospace and Ultra, and for the first time, approved by the FAA, the emphasis has been to thoroughly and comprehensively test the WIPS system in simulated circumstances, pre-flight trails. This has reduced the need for expensive and extremely time consuming flight trials, and has provided a more extensive and thoroughly monitored test activity than is possible in the air. The BRIAT program is a recognised part of the process of certifying the WIPS to FAA Part 25 Appendix C.

With BRIAT trials now complete, the WIPS enters a rigorous but reduced flight trial program to prove performance in the air and is expected to gain certification in Qtr2 2008. Overall, the Boeing 787 WIPS is scheduled to be designed, tested and qualified by the Boeing /GKN and Ultra WIPS team in 40 months from contract award in December 2004.

Electro-thermal ice protection systems remove the need to bleed hot air from the engine, which is the traditional approach to protect against in-flight icing. The system works by embedding electro-thermal heater mats into the surface to be protected. These mats comprise an advanced composite material pad which contains a heater element. An electronic controller (developed by Ultra Electronics) monitors the condition of each surface individually. Compared to traditional hot gas systems, heat can be locally targeted and finely controlled to avoid icing in very specific areas making electro-thermal systems compatible with today's advanced high performance critical wing designs. This increases the performance and endurance of the airframe and reduces fuel consumption significantly. The simplicity of the system also reduces maintenance tasks, helping to limit aircraft downtimes. The image shows surface preparation prior to application of Electro-Thermal Heating Element, taking place at the GKN Aerospace facility in Luton, England

Publication date: 19/06/2007

comments powered by Disqus
News feed Subscribe to our Composite News Feed

Latest Vacancies

Mafic Basalt logo

New vacancy

Mafic Basalt logo

New vacancy

New vacancy

URT Group logo

New vacancy

Future Events

October 2014

JEC Americas 2014 - Boston

November 2014